Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Electron. j. biotechnol ; 46: 55-64, jul. 2020. tab, graf
Article in English | LILACS | ID: biblio-1223246

ABSTRACT

BACKGROUND: Ethanol concentration (PE), ethanol productivity (QP) and sugar consumption (SC) are important values in industrial ethanol production. In this study, initial sugar and nitrogen (urea) concentrations in sweet sorghum stem juice (SSJ) were optimized for high PE (≥10%, v/v), QP, (≥2.5 g/L·h) and SC (≥90%) by Saccharomyces cerevisiae SSJKKU01. Then, repeated-batch fermentations under normal gravity (NG) and high gravity (HG) conditions were studied. RESULTS: The initial sugar at 208 g/L and urea at 2.75 g/L were the optimum values to meet the criteria. At the initial yeast cell concentration of ~1 × 108 cells/mL, the PE, QP and SC were 97.06 g/L, 3.24 g/L·h and 95.43%, respectively. Repeated-batch fermentations showed that the ethanol production efficiency of eight successive cycles with and without aeration were not significantly different when the initial sugar of cycles 2 to 8 was under NG conditions (~140 g/L). Positive effects of aeration were observed when the initial sugar from cycle 2 was under HG conditions (180­200 g/L). The PE and QP under no aeration were consecutively lower from cycle 1 to cycle 6. Additionally, aeration affected ergosterol formation in yeast cell membrane at high ethanol concentrations, whereas trehalose content under all conditions was not different. CONCLUSION: Initial sugar, sufficient nitrogen and appropriated aeration are necessary for promoting yeast growth and ethanol fermentation. The SSJ was successfully used as an ethanol production medium for a high level of ethanol production. Aeration was not essential for repeated-batch fermentation under NG conditions, but it was beneficial under HG conditions.


Subject(s)
Saccharomyces cerevisiae/metabolism , Sorghum/chemistry , Ethanol/metabolism , Saccharomyces cerevisiae/growth & development , Urea , Yeasts/growth & development , Aeration , Sorghum/microbiology , Ethanol/analysis , Sugars , Juices , Fermentation , Gravitation , Nitrogen
2.
Biol. Res ; 53: 02, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089077

ABSTRACT

The budding yeast Saccharomyces cerevisiae has been considered for more than 20 years as a premier model organ- ism for biological sciences, also being the main microorganism used in wide industrial applications, like alcoholic fermentation in the winemaking process. Grape juice is a challenging environment for S. cerevisiae , with nitrogen deficiencies impairing fermentation rate and yeast biomass production, causing stuck or sluggish fermentations, thus generating sizeable economic losses for wine industry. In the present review, we summarize some recent efforts in the search of causative genes that account for yeast adaptation to low nitrogen environments, specially focused in wine fermentation conditions. We start presenting a brief perspective of yeast nitrogen utilization under wine fermentative conditions, highlighting yeast preference for some nitrogen sources above others. Then, we give an outlook of S. cerevisiae genetic diversity studies, paying special attention to efforts in genome sequencing for population structure determination and presenting QTL mapping as a powerful tool for phenotype-genotype correlations. Finally, we do a recapitulation of S. cerevisiae natural diversity related to low nitrogen adaptation, specially showing how different studies have left in evidence the central role of the TORC1 signalling pathway in nitrogen utilization and positioned wild S. cerevisiae strains as a reservoir of beneficial alleles with potential industrial applications (e.g. improvement of industrial yeasts for wine production). More studies focused in disentangling the genetic bases of S. cerevisiae adaptation in wine fermentation will be key to determine the domestication effects over low nitrogen adaptation, as well as to definitely proof that wild S. cerevisiae strains have potential genetic determinants for better adaptation to low nitrogen conditions.


Subject(s)
Saccharomyces cerevisiae/metabolism , Wine/microbiology , Adaptation, Physiological , Vitis/metabolism , Fermentation , Nitrogen/metabolism , Saccharomyces cerevisiae/growth & development , Vitis/microbiology
3.
Braz. j. microbiol ; 48(4): 791-800, Oct.-Dec. 2017. graf
Article in English | LILACS | ID: biblio-889166

ABSTRACT

ABSTRACT Lignocellulose-derived inhibitors have negative effects on the ethanol fermentation capacity of Saccharomyces cerevisiae. In this study, the effects of eight typical inhibitors, including weak acids, furans, and phenols, on glucose and xylose co-fermentation of the recombinant xylose-fermenting flocculating industrial S. cerevisiae strain NAPX37 were evaluated by batch fermentation. Inhibition on glucose fermentation, not that on xylose fermentation, correlated with delayed cell growth. The weak acids and the phenols showed additive effects. The effect of inhibitors on glucose fermentation was as follows (from strongest to weakest): vanillin > phenol > syringaldehyde > 5-HMF > furfural > levulinic acid > acetic acid > formic acid. The effect of inhibitors on xylose fermentation was as follows (from strongest to weakest): phenol > vanillin > syringaldehyde > furfural > 5-HMF > formic acid > levulinic acid > acetic acid. The NAPX37 strain showed substantial tolerance to typical inhibitors and showed good fermentation characteristics, when a medium with inhibitor cocktail or rape straw hydrolysate was used. This research provides important clues for inhibitors tolerance of recombinant industrial xylose-fermenting S. cerevisiae.


Subject(s)
Saccharomyces cerevisiae/drug effects , Xylose/metabolism , Glucose/metabolism , Phenols/metabolism , Phenols/pharmacology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Acids/metabolism , Acids/pharmacology , Industrial Microbiology , Fermentation , Furans/metabolism , Furans/pharmacology
4.
Braz. j. microbiol ; 48(2): 326-332, April.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-839372

ABSTRACT

Abstract Stress tolerance is a key attribute that must be considered when using yeast cells for industrial applications. High temperature is one factor that can cause stress in yeast. High environmental temperature in particular may exert a natural selection pressure to evolve yeasts into thermotolerant strains. In the present study, three yeasts (Saccharomyces cerevisiae, MC4, and Kluyveromyces marxianus, OFF1 and SLP1) isolated from hot environments were exposed to increased temperatures and were then compared with a laboratory yeast strain. Their resistance to high temperature, oxidative stress, and antioxidant response were evaluated, along with the fatty acid composition of their cell membranes. The SLP1 strain showed a higher specific growth rate, biomass yield, and biomass volumetric productivity while also showing lower duplication time, reactive oxygen species (ROS) production, and lipid peroxidation. In addition, the SLP1 strain demonstrated more catalase activity after temperature was increased, and this strain also showed membranes enriched in saturated fatty acids. It is concluded that the SLP1 yeast strain is a thermotolerant yeast with less oxidative stress and a greater antioxidant response. Therefore, this strain could be used for fermentation at high temperatures.


Subject(s)
Saccharomyces cerevisiae/physiology , Stress, Physiological , Kluyveromyces/physiology , Oxidative Stress , Antioxidants/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/radiation effects , Saccharomyces cerevisiae/chemistry , Kluyveromyces/growth & development , Kluyveromyces/radiation effects , Kluyveromyces/chemistry , Lipid Peroxidation , Catalase/analysis , Cell Membrane/chemistry , Reactive Oxygen Species/metabolism , Biomass , Fatty Acids/analysis , Hot Temperature
5.
Braz. j. microbiol ; 47(1): 136-142, Jan.-Mar. 2016. tab, graf
Article in English | LILACS | ID: lil-775098

ABSTRACT

Abstract The kinetics of an extracellular β-D-fructofuranosidase fructohydrolase production by Saccharomyces cerevisiae in a chemically defined medium, i.e., sucrose peptone agar yeast extract at pH 6, was investigated. The wild-type was treated with a chemical mutagen, methyl methane sulfonate. Among the six mutants isolated, methyl methane sulfonate-V was found to be a better enzyme producing strain (52 ± 2.4a U/mL). The maximum production (74 ± 3.1a U/mL) was accomplished after at 48 h (68 ± 2.7a mg/mL protein). The mutants were stabilized at low levels of 5-fluoro-cytocine and the viable ones were further processed for optimization of cultural conditions and nutritional requirements. The sucrose concentration, incubation period and pH were optimized to be 30 g/L, 28 °C, and 6.5, respectively. The methyl methane sulfonate-V exhibited an improvement of over 10 folds in enzyme production when 5 g/L ammonium sulfate was used as a nitrogen source. Thin layer chromatography and high-performance liquid chromatography analysis illustrated the optimal enzyme activity supported by the higher rate of hydrolysis of sucrose into monosaccharides, particularly α-D-glucose and β-D-fructose. The values for Qp (2 ± 0.12c U/mL/h) and Yp/s (4 ± 1.24b U/g) of the mutant were considerably increased in comparison with other yeast strains (both isolates and viable mutants). The mutant could be exploited for enzyme production over a wider temperature range (26–34 °C), with significantly high enzyme activity (LSD 0.048, HS) at the optimal temperature.


Subject(s)
Mutation , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , beta-Fructofuranosidase/biosynthesis , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Culture Media/chemistry , Hydrogen-Ion Concentration , Hydrolysis , Mutagenesis , Mutagens/metabolism , Serratia , Saccharomyces cerevisiae/genetics , Sucrose/metabolism , Sulfinic Acids/metabolism , Temperature
6.
Braz. j. microbiol ; 45(3): 885-892, July-Sept. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-727017

ABSTRACT

India is amongst the largest banana (Musa acuminata) producing countries and thus banana pseudo stem is commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus ellipticus and Aspergillus fumigatus reported to be producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was fermented by Saccharomyces cerevisiae NCIM 3570 to produce ethanol. Fermentation of cellulosic hydrolysate (4.1 g%) gave maximum ethanol (17.1 g/L) with yield (84%) and productivity (0.024 g%/h) after 72 h. Some critical aspects of fungal pretreatment for saccharification of cellulosic substrate using A. ellipticus and A. fumigatus for ethanol production by S. cerevisiae NCIM 3570 have been explored in this study. It was observed that pretreated banana pseudo stem can be economically utilized as a cheaper substrate for ethanol production.


Subject(s)
Aspergillus/metabolism , Biofuels , Ethanol/metabolism , Industrial Waste , Musa/metabolism , Plant Stems/metabolism , Saccharomyces cerevisiae/metabolism , Aspergillus/growth & development , India , Saccharomyces cerevisiae/growth & development
7.
Braz. j. microbiol ; 45(2): 457-465, Apr.-June 2014. graf, tab
Article in English | LILACS | ID: lil-723100

ABSTRACT

The main objective of this study was production of ethanol from three lignocellulosic biomasses like sugarcane bagasse, rice straw and wheat straw by Sacchromyces cervisae. All the three substrates were ground to powder form (2 mm) and pretreated with 3%H2O2 + 2% NaOH followed by steaming at 130 °C for 60 min. These substrates were hydrolyzed by commercial cellulase enzyme. The whole fermentation process was carried out in 500 mL Erlenmeyer flask under anaerobic conditions in submerged fermentation at 30 °C for three days of incubation period. FTIR analysis of the substrates indicated significant changes in the alteration of the structure occurred after pretreatment which leads to efficient saccharification. After pretreatment the substrates were hydrolyzed by commercial cellulase enzyme and maximum hydrolysis was observed in sugarcane bagasse (64%) followed by rice straw (40%) and wheat straw (34%). Among all these tested substrates, sugarcane bagasse (77 g/L) produced more ethanol as compared to rice straw (62 g/L) and wheat straw (44 g/L) using medium composition of (%) 0.25 (NH4)2SO4, 0.1 KH2PO4, 0.05 MgSO4, 0.25 Yeast extract by S. cervisae.


Subject(s)
Ethanol/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Anaerobiosis , Agriculture/methods , Cellulose , Fermentation , Oryza/metabolism , Plant Stems/metabolism , Saccharum/metabolism , Temperature , Triticum/metabolism , Waste Products
8.
Braz. j. microbiol ; 45(2): 491-494, Apr.-June 2014. graf
Article in English | LILACS | ID: lil-723104

ABSTRACT

Yeasts can be enriched with microelements, including iron; however, special physicochemical conditions are required to formulate a culture media that promotes both yeast growth and iron uptake. Different iron sources do not affect biomass formation; however, considering efficacy, cost, stability, and compatibility with Saccharomyces cerevisiae metabolism, ferrous sulphate is recommended.


Subject(s)
Iron Compounds/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Culture Media/chemistry , Salts/metabolism
9.
Braz. j. microbiol ; 45(1): 59-66, 2014. ilus, tab
Article in English | LILACS | ID: lil-709479

ABSTRACT

Interactions between yeasts and lactic acid bacteria are strain specific, and their outcome is expected to change in simultaneous alcoholic -malolactic fermentations from the pattern observed in successive fermentations. One Oenococcus oeni strain Lalvin VP41TM was inoculated with two Saccharomyces cerevisiae strains either simultaneously, three days after the yeast inoculation, or when alcoholic fermentation was close to finish. Early bacterial inoculations with each yeast strain allowed for the growth of the bacterial populations, and the length of malolactic fermentation was reduced to six days. Alcoholic fermentation by Lalvin ICV D80® yeast strain left the highest residual sugar, suggesting a negative effect of the bacterial growth and malolactic activity on its performance. In sequential inoculations the bacterial populations did not show actual growth with either yeast strain. In this strategy, both yeast strains finished the alcoholic fermentations, and malolactic fermentations took longer to finish. Lalvin ICV D80® allowed for higher viability and activity of the bacterial strain than Fermicru UY4® under the three inoculation strategies. This was beneficial for the sequential completion of both fermentations, but negatively affected the completion of alcoholic fermentation by Lalvin ICV D80® in the early bacteria additions. Conversely, Fermicru UY4®, which was rather inhibitory towards the bacteria, favored the timely completion of both fermentations simultaneously. As bacteria in early inoculations with low or no SO2 addition can be expected to multiply and interact with fermenting yeasts, not only are the yeast-bacterium strains combination and time point of the inoculation to be considered, but also the amount of bacteria inoculated.


Subject(s)
Oenococcus/growth & development , Oenococcus/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Vitis/microbiology , Wine/microbiology , Fermentation
10.
Rev. colomb. biotecnol ; 15(2): 18-28, jul.-dic. 2013. graf
Article in Spanish | LILACS | ID: lil-703333

ABSTRACT

Una de las técnicas más utilizadas para la predicción de producción de bioproductos y distribución intracelular de flujos de microorganismos es el Análisis de Balance de Flujos - FBA por sus siglas en inglés. El FBA requiere de una función objetivo que represente el objetivo biológico del microorganismo estudiado. En este trabajo se propone un nuevo tipo de funciones objetivo basada en la combinación de objetivos de compartimentos físicos presentes en el microorganismo estudiado. Este tipo de funciones objetivo son examinadas junto con un modelo estequiométrico extraído de la reconstrucción iMM904 del microorganismo S. cerevisiae. Su desempeño se compara con la función objetivo más usada en la literatura, la maximización de biomasa, en condiciones experimentales anaeróbicas en cultivos continuos y aeróbicas en cultivos tipo lote. La función objetivo propuesta en este trabajo mejora las predicciones de crecimiento en un 10% y las predicciones de producción de etanol en un 75% respecto a las obtenidas por la función objetivo de maximización de biomasa, en condiciones anaeróbicas. En condiciones aeróbicas tipo lote la función objetivo propuesta mejora en un 98% las predicciones de crecimiento y en un 70% las predicciones de etanol con respecto a la función objetivo de biomasa.


Flux Balance Analysis - FBA - is one of the most used techniques in prediction of microorganism bioproducts. It requires an objective function that represents biological objective of the studied microorganism. This paper presents a new kind of objective functions based on individual physical compartment objetives in the studied microorganism. These kind of functions was tested with a stoichiometric model extracted from iMM904 reconstruction of S. cerevisiae and its performance is compared with the most used objective function in literature, growth maximization, in anaerobic and aerobic batch conditions. The presented objective function outperform growth predictions in 10% and ethanol predictions in 75% compared with obtained by maximization of growth objective function, in anaerobic conditions. In aerobic batch conditions the presented objective function outperforms in 98% growth preditions and 70% ethanol predictions compared with growth maximization.


Subject(s)
Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Ethanol/metabolism , Ethanol/chemistry , Ethanol/chemical synthesis , Forecasting/methods
11.
Braz. j. microbiol ; 44(4): 1097-1104, Oct.-Dec. 2013. graf, tab
Article in English | LILACS | ID: lil-705288

ABSTRACT

In this work, natural cashew apple juice was used as cultivation medium as an alternative to substitute brain heart infusion medium. The effect of aeration and juice supplementation with yeast extract on the production of hyaluronic acid in batch fermentation was also investigated. Similar levels of cell mass were obtained in inoculum using cashew apple juice supplemented with yeast extract or the conventional brain heart infusion medium. Fermentation in Erlenmeyer flasks produced low biomass and hyaluronic acid concentrations. The hyaluronic acid concentration and viscosity increased from 0.15 g/L and 3.87 cP (no aeration or medium supplementation) to 1.76 g/L and 107 cP, when aeration (2 vvm) and 60 g/L of yeast extract were used. The results suggest the production of low-molecular weight hyaluronic acid oligomers instead of the high molecular weight polymer.


Subject(s)
Anacardium/chemistry , Culture Media/chemistry , Hyaluronic Acid/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Biomass , Fermentation
12.
Braz. j. microbiol ; 44(4): 1121-1131, Oct.-Dec. 2013. ilus, graf, tab
Article in English | LILACS | ID: lil-705292

ABSTRACT

Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies). The effects of acid treatment at different pH values on the growth of two strains ("52" -rough and "PE-02" smooth) as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion) did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone.


Subject(s)
Alcohols/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Carboxylic Acids/metabolism , Culture Media/chemistry , Fermentation , Hydrogen-Ion Concentration , Saccharomyces cerevisiae/drug effects
13.
Braz. j. microbiol ; 44(3): 935-944, July-Sept. 2013. ilus, graf, tab
Article in English | LILACS | ID: lil-699788

ABSTRACT

Sixty six indigenous Saccharomyces cerevisiae strains were evaluated in stressful conditions (temperature, osmolarity, sulphite and ethanol tolerance) and also ability to flocculate. Eighteen strains showed tolerant characteristics to these stressful conditions, growing at 42 ºC, in 0.04% sulphite, 1 mol L-1 NaCl and 12% ethanol. No flocculent characteristics were observed. These strains were evaluated according to their fermentative performance in sugar cane juice. The conversion factors of substrates into ethanol (Yp/s), glycerol (Yg/s) and acetic acid (Yac/s), were calculated. The highest values of Yp/s in sugar cane juice fermentation were obtained by four strains, one isolated from fruit (0.46) and the others from sugar cane (0.45, 0.44 and 0.43). These values were higher than the value obtained using traditional yeast (0.38) currently employed in the Brazilian bioethanol industry. The parameters Yg/s and Yac/s were low for all strains. The UFLA FW221 presented the higher values for parameter related to bioethanol production. Thus, it was tested in co-culture with Lactobacillus fermentum. Besides this, a 20-L vessel for five consecutive batches of fermentation was performed. This strain was genetically stable and remained viable during all batches, producing high amounts of ethanol. The UFLA FW221 isolated from fruit was suitable to produce bioethanol in sugar cane juice. Therefore, the study of the biodiversity of yeasts from different environmental can reveal strains with desired characteristics to industrial applications.


Subject(s)
Stress, Physiological , Saccharomyces cerevisiae/physiology , Acetic Acid/metabolism , Brazil , Carbohydrate Metabolism , Cell Aggregation , Ethanol/metabolism , Ethanol/toxicity , Fermentation , Glycerol/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/radiation effects , Sodium Chloride/metabolism , Sodium Chloride/toxicity , Sulfites/metabolism , Sulfites/toxicity , Temperature
14.
Braz. j. microbiol ; 44(2): 551-558, 2013. ilus, graf, tab
Article in English | LILACS | ID: lil-688588

ABSTRACT

The aim of this work was to implement experimentally a simple glucose-limited feeding strategy for yeast biomass production in a bubble column reactor based on a spreadsheet simulator suitable for industrial application. In biomass production process using Saccharomyces cerevisiae strains, one of the constraints is the strong tendency of these species to metabolize sugars anaerobically due to catabolite repression, leading to low values of biomass yield on substrate. The usual strategy to control this metabolic tendency is the use of a fed-batch process in which where the sugar source is fed incrementally and total sugar concentration in broth is maintained below a determined value. The simulator presented in this work was developed to control molasses feeding on the basis of a simple theoretical model in which has taken into account the nutritional growth needs of yeast cell and two input data: the theoretical specific growth rate and initial cell biomass. In experimental assay, a commercial baker's yeast strain and molasses as sugar source were used. Experimental results showed an overall biomass yield on substrate of 0.33, a biomass increase of 6.4 fold and a specific growth rate of 0.165 h-1 in contrast to the predicted value of 0.180 h-1 in the second stage simulation.


Subject(s)
Biomass , Glucose/metabolism , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Bioreactors/microbiology , Fermentation , Molasses
15.
São Paulo; s.n; 2011. 94 p. ilus, tab, graf.
Thesis in Portuguese | LILACS | ID: lil-691569

ABSTRACT

O envelhecimento envolve um progressivo declínio na eficiência metabólica dos sistemas biológicos ao longo do tempo. Embora não possa ser evitado, o envelhecimento pode ter seus fenótipos típicos mitigados em organismos submetidos à restrição calórica, um regime dietético que consiste em uma oferta diminuída de calorias. Ao longo do tempo, a levedura Saccharomyces cerevisiae mostrou-se um importante organismo modelo para o estudo de importantes marcas relacionadas ao envelhecimento, sobretudo por ser responsiva à restrição calórica. Através de uma abordagem do metabolismo energético e do estado de óxido-redução celular, nós temos buscado identificar quais são os fatores imprescindíveis para a exibição do aumento do tempo de vida cronológico dessa levedura. Nós verificamos que defeitos específicos na síntese de nicotinamida adenina dinucleotídeo aumentam a geração mitocondrial de espécies reativas de oxigênio pela enzima dihidrolipoil desidrogenase, porém não suprimem o aumento da do tempo de vida cronológico de S. cerevisiae. Por outro lado, os mutantes dessa levedura irreponsíveis à restrição calórica são aqueles que possuem defeitos no metabolismo aeróbico, mais especificamente na montagem da cadeia de transporte de elétrons. Também verificamos que diferentes mutações em enzimas do ciclo dos ácidos tricarboxílicos alteram a taxa de perda do DNA mitocondrial de S. cerevisiae numa forma dependente da concentração inicial de glicose nos meios de cultura e também do tempo de cultivo. Também observamos que a eficiência energética em S. cerevisiae cultivada sob restrição calórica é aumentada em relação à levedura cultivada em condição controle. Finalmente, também observamos que a morfologia mitocondrial é alterada pelo estado metabólico celular e se correlaciona com a geração de espécies reativas de oxigênio nesse organismo. Assim sendo, em conjunto, esses dados revelam importantes modificações metabólicas e no estado de óxido redução proporcionadas pela...


Aging involves a progressive decline in metabolic efficiency of biological systems over time. Although it cannot be avoided, aging phenotypes are delayed in organisms undergoing caloric restriction, a dietary regimen consisting of a reduced availability of calories. The yeast Saccharomyces cerevisiae has proved to be an important model organism for studying important characteristics related to aging, and is responsive to caloric restriction. We sought to identify factors essential for increased chronological lifespan in yeast by investigating changes in energy metabolism and redox state. We found that defects in the synthesis of nicotinamide adenine dinucleotide increased mitochondrial generation of reactive oxygen species by the enzyme dihidrolipoil dehydrogenase, but did not suppress the increase in chronological life span. On the other hand, mutants of this yeast which do not respond to caloric restriction are those that have defects in aerobic metabolism, specifically in the assembly of the electron transport chain. We also found that different mutations in enzymes of the citric acid cycle alter the rate of loss of mitochondrial in a manner dependent on the initial concentration of glucose in culture media and culture time. We also observed that energy efficiency in S. cerevisiae grown under caloric restriction is increased compared to yeast grown under control conditions. Finally, we also observed that mitochondrial morphology is altered by the cellular metabolic state and correlates with the generation of reactive oxygen species in this organism. Thus, altogether, these data reveal significant changes in metabolism and redox state promoted by caloric restriction, how phenotypes typical of aging can be prevented in S. cerevisiae, as well as what factors are required for the response of yeast to caloric restriction.


Subject(s)
Caloric Restriction , Energy Metabolism , Oxidation-Reduction , Saccharomyces cerevisiae/growth & development , Aging , Mitochondria , Two-Hybrid System Techniques
16.
Electron. j. biotechnol ; 13(5): 12-13, Sept. 2010. ilus, tab
Article in English | LILACS | ID: lil-591894

ABSTRACT

This study aimed to assess the use of mesquite pods hydrated mash as biomass for the growth of Saccharomyces cerevisiae UFEPEDA-1012 and Zymomonas mobilis UFEPEDA-205 and for ethanol production using a submerged fermentation. A 2³ factorial design was used to analyze the effects of the type of microorganism, time of fermentation and condition of cultivation on the ethanol production in mesquite pods mash (30 g 100 mL-1). From the obtained results the hydrated mesquite pods mash presented as a good substrate for the growth of S. cerevisiae and Z. mobilis in comparison to the standard media. The effect that most affected the ethanol production was the type of microorganism. The highest ethanol concentration (141.1 gL-1) was found when Z. mobilis was cultivated in mesquite pods mash under static condition for 36 hrs. Ethanol production by S. cerevisiae was higher (44.32 gL-1) after 18 hrs of fermentation under static condition. According to these results, the mesquite pods could be known as an alternative substrate to be used for biotechnological purposes, mainly for ethanol production.


Subject(s)
Ethanol/metabolism , Prosopis/chemistry , Saccharomyces cerevisiae/growth & development , Zymomonas/growth & development , Biomass , Biotechnology/methods , Chromatography, Gas , Culture Media , Fermentation , Saccharomyces cerevisiae/metabolism , Time Factors , Zymomonas/metabolism
17.
Braz. j. microbiol ; 41(2): 477-485, Apr.-June 2010. tab
Article in English | LILACS | ID: lil-545357

ABSTRACT

Saccharomyces cerevisiae HAU-1, a time tested industrial yeast possesses most of the desirable fermentation characteristics like fast growth and fermentation rate, osmotolerance, high ethanol tolerance, ability to ferment molasses, and to ferment at elevated temperatures etc. However, this yeast was found to be sensitive against the killer strains of Saccharomyces cerevisiae. In the present study, killer trait was introduced into Saccharomyces cerevisiae HAU-1 by protoplast fusion with Saccharomyces cerevisiae MTCC 475, a killer strain. The resultant fusants were characterized for desirable fermentation characteristics. All the technologically important characteristics of distillery yeast Saccharomyces cerevisiae HAU-1 were retained in the fusants, and in addition the killer trait was also introduced into them. Further, the killer activity was found to be stably maintained during hostile conditions of ethanol fermentations in dextrose or molasses, and even during biomass recycling.


Subject(s)
Fermentation , Yeasts/growth & development , Yeasts/isolation & purification , Molasses/analysis , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/isolation & purification , Vitis , Biomass , Food Samples , Methods , Methods
18.
São Paulo; s.n; 2010. 159 p.
Thesis in Portuguese | LILACS, SES-SP, SESSP-IBPROD, SES-SP, SESSP-IBACERVO | ID: biblio-1080920

ABSTRACT

O proteassomo é o componente do sistema Ubiquitina-Proteassomo (UPS), responsável pela degradação de proteínas intracelulares marcadas com cauda de ubiquitina. No entanto, a unidade catalítica do proteassomo (20SPT), destituída de unidades regulatórias, é capaz de degradar proteínas de maneira ubiquitina-independente. Diversas modificações pós-traducionais já foram descritas para o 20SPT, incluindo a S-glutatiolação. De acordo com Demasi e col., (2003) o 20SPT da levedura Saccharomyces cerevisiae possui a atividade tipo-quimiotripsina modulada por glutationa e o mecanismo de glutatiolação implica na formação do intermediário ácido sulfênico. No presente trabalho, identificamos por espectrometria de massas (MS/MS) um total de sete resíduos diferentes de cisteína glutatiolados no 20SPT, sendo seis in vitro por incubação com GSH e três in vivo, extraído de células crescidas até atingir fase estacionária tardia em meio rico. Analisando a estrutura 3D do 20SPT, observou-se que os resíduos de cisteína glutatiolados não estão localizados na entrada da câmara catalítica nem próximos aos sítios-ativos, indicando um mecanismo alostérico da modulação da atividade proteassomal...


The proteasome is the protease of the Ubiquitin-Proteasome System (UPS) responsible for the breakdown of intracellular ubiquitin-tagged proteins. However, the catalytic particle of the proteasome (20SPT) is capable of hydrolyzing some substrates in an ubiquitin-independent fashion. The S-glutathiolation of the 20SPT was described among several post-translational modifications and according to Demasi et. al. (2003), the chymotrypsin-like activity of proteasome from yeast Saccharomyces cerevisiae is regulated by glutathione. The mechanism of S-glutathiolation is dependent on the formation of the sulfenic acid intermediate in the cisteine residues of the 20SPT. In this present work, we identified in vitro and in vivo, a total of seven different S-glutathiolated proteasomal cysteine residues by mass spectrometry studies (MS/MS) and, by analyzing the 3D structure of the 20SPT, the modified cysteine residues are not located either on the entrance of the catalytic core or near to the active sites, indicating an allosteric mechanism of proteasomal modulation. During protein degradation, the natively S-glutathiolated 20SPT produces different patterns of peptide products when compared to the DTT-reduced particle through distinct site-specific cleavage of the protein substrates, as herein demonstrated by HPLC and MS/MS analyses...


Subject(s)
Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry
19.
São PAulo; s.n; 22 set. 2008. [155] p. ilus, graf, tab.
Thesis in Portuguese | LILACS | ID: lil-508063

ABSTRACT

Em eucariotos, a formação das subunidades ribossomais envolve múltiplos fatores, responsáveis pelas etapas de maturação dos rRNAs e por sua associação a proteínas ribossomais. A via de processamento de pré-rRNA é bastante complexa e inclui várias etapas de modificação de nucleotídeos e clivagens endo- e exonucleolíticas. As modificações de nucleotídeos são dirigidas por snoRNPs, formados por snoRNAs e proteínas, que são divididos em duas classes gerais, de box H/ACA (pseudouridilação) e de box C/O (metilação). Dentre os snoRNP de box C/D esta o U3, que embora apresente as sequências características e se associe a proteínas desse grupo de snoRNPs, não dirige metilações no rRNA, mas sim as clivagens iniciais no pré-rRNA 35S. O snoRNA U3 de Saccharomyces cerevisiae é codificado por dois genes que contêm introns, snR17A e snR17B. Embora a via de montagem do snoRNP U3 ainda não tenha sido determinada com precisão, sabe-se que algumas proteínas do core de box C/O ligam-se ao pré-snoRNA U3 co-transcricionalmente, afetando o splicing e o processamento da extremidade 3´ deste snoRNA...


Subject(s)
DNA , In Vitro Techniques , Saccharomyces cerevisiae Proteins/analysis , Saccharomyces cerevisiae Proteins/isolation & purification , RNA, Ribosomal/analysis , RNA, Ribosomal/isolation & purification , Ribosomes/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/genetics , Culture Media , Escherichia coli/cytology , Escherichia coli/isolation & purification , Polymerase Chain Reaction/methods , Polymerase Chain Reaction , Blotting, Western/methods , Blotting, Western
20.
Braz. j. microbiol ; 39(2): 325-332, Apr.-June 2008. graf, tab
Article in English | LILACS | ID: lil-487713

ABSTRACT

The study was performed in a batch system in order to determine the effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine yeast strains Saccharomyces cerevisiae Kalecik 1 and Narince 3. The highest values of dry mass and specific growth rate were obtained at pH 4.00 for both of the strains. Maximum specific glycerol production rates were obtained at pH 5.92 and 6.27 for the strains Kalecik 1 and Narince 3, respectively. Kalecik 1 strain produced maximum 8.8 gL-1 of glycerol at pH 6.46. Maximum glycerol concentration obtained by the strain Narince 3 was 9.1 gL-1 at pH 6.48. Both yeasts reached maximum specific growth rate at 30ºC. Optimum temperature range for glycerol production was determined as 25-30ºC for the strain Kalecik 1. The strain Narince 3 reached maximum specific glycerol production rate at 30ºC. Maximum glycerol concentrations at 30ºC were obtained as 8.5 and 7.6 gL-1 for Kalecik 1 and Narince 3, respectively.


Este estudo foi conduzido em sistema descontínuo a fim de determinar o efeito do pH e da temperatura na cinética de crescimento celular ede produção de glicerol de duas linhagens selvagens de vinificação, Saccharomyces cerevisiae Kalecik 1 e Saccharomyces cerevisiae Narince 3. Os maiores valores de massa celular seca e de velocidade específica de crescimento foram obtidos em pH 4,0 para as duas linhagens. A máxima velocidade específica de produção de glicerol foi obtida em pH 5,92 e 6,27 para a linhagem Kalecik 1 e Narince 3, respectivamente. A linhagem Kalecik 1 proporcionou a máxima produção de glicerol, 8,8 gL-1 em pH 6,46. A máxima concentração de glicerol obtida pela linhagem Narince 3 foi de 9,1 gL-1 no pH 6,48. As duas linhagens atingiram a máxima velocidade específica de crescimento à temperatura de 30ºC. A faixa de temperatura ótima para a produção de glicerol para a linhagem Kalecik 1 variou de 25 a 30ºC. A linhagem Narince 3 atingiu a máxima velocidade específica de produção de glicerol a 30ºC. A máxima concentração de glicerol, obtida a 30ºC, foi de 8,5 e 7,6 gL-1 para as linhagens Kalecik 1 e Narince 3, respectivamente.


Subject(s)
Cell Enlargement , Glycerol/analysis , In Vitro Techniques , Industrial Microbiology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/isolation & purification , Food Samples , Hydrogen-Ion Concentration , Kinetics , Methods , Reference Standards , Vitis
SELECTION OF CITATIONS
SEARCH DETAIL